更多>>精华博文推荐
更多>>人气最旺专家

元宏

领域:中国日报网河南

介绍:体现共同富裕原则,广泛吸收社会资金,缓解就业压力,增加积累和税收。...

关付警

领域:人民经济网

介绍:被追捧的少儿编程究竟在学什么,家长和孩子为何愿意花这么多钱进去。利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅

w66.con
本站新公告利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅
wn1 | 2019-01-18 | 阅读(225) | 评论(675)
3、落款署名,日期。【阅读全文】
利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅
vnj | 2019-01-18 | 阅读(633) | 评论(68)
有真正的花和果实胚珠裸露无子房壁胚珠有子房壁包被种子裸露无果皮包被种子外有果皮包被适应干旱、贫瘠的土地生活分布广泛,适应能力强。【阅读全文】
pwx | 2019-01-18 | 阅读(578) | 评论(549)
尤其是在写材料过程中,遇到稿子多、时间紧、任务重时,往往是兵将挡,水土掩,疲于应付。【阅读全文】
0tk | 2019-01-18 | 阅读(612) | 评论(633)
即筹划一个“某一方面”的包干制的问答系统。【阅读全文】
f0f | 2019-01-18 | 阅读(868) | 评论(662)
读数时,若液面是凹液面,视线应以凹液面底部为准;若液面是凸液面,视线应以凸液面顶部为准。【阅读全文】
9bi | 2019-01-17 | 阅读(883) | 评论(331)
三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。【阅读全文】
o9d | 2019-01-17 | 阅读(793) | 评论(857)
这段时间里,经历了形形色色的各种人,这个世界很大,大就大在你想见的人居然和你擦肩而过却未曾发觉,小就小在有时一个人走在安静的小路想一个人享受一下宁静的滋味都会被熟人认出。【阅读全文】
se9 | 2019-01-17 | 阅读(764) | 评论(4)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅,利来国际旗舰厅
zkh | 2019-01-17 | 阅读(586) | 评论(562)
中秋节的别称中秋节又称月夕、秋节、仲秋节、八月节、八月会、追月节、玩月节、拜月节、女儿节或团圆节。【阅读全文】
zqm | 2019-01-16 | 阅读(302) | 评论(533)
”这位老师表示,这种游戏的确对训练孩子的逻辑思维有帮助,但不是每个孩子都适合学编程。【阅读全文】
hdj | 2019-01-16 | 阅读(678) | 评论(568)
5.规划断面管廊规划断面根据不同的入廊管线情况,主要分为单舱、双舱、三舱、四舱等不同型式。【阅读全文】
9cy | 2019-01-16 | 阅读(872) | 评论(302)
3、落款署名,日期。【阅读全文】
j9k | 2019-01-16 | 阅读(239) | 评论(754)
汎此忘忧物,远我遗世情。【阅读全文】
7ab | 2019-01-15 | 阅读(400) | 评论(905)
PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实【阅读全文】
g7b | 2019-01-15 | 阅读(28) | 评论(583)
《星动亚洲》第四季摒弃了单纯的感官娱乐,注重青年人“内在颜值”的提升和培养,把弘扬社会主义核心价值观、引导青少年追求真善美、体现中华优秀传统文化作为了节目的主线,把优秀的历史、文化、科教等知识融入节目中。【阅读全文】
共5页

友情链接,当前时间:2019-01-18

利来娱乐城 利来娱乐网址 利来 利来娱乐城 利来国际最老牌
利来国际app 利来国际最老牌手机板 利来国际官方网站 利来国际w66平台 利来娱乐帐户
w66.con 利来国际旗舰厅怎么 利来国际老牌软件 w66利来国际老牌 利来国际app旗舰厅
利来娱乐账户 国际利来ag厅 利来娱乐帐户 利来娱乐备用 利来娱乐
开阳县| 克东县| 东平县| 同心县| 正定县| 手机| 合水县| 日喀则市| 尖扎县| 铜川市| 韶山市| 旌德县| 卢龙县| 崇左市| 平定县| 祁阳县| 嘉义市| 勃利县| 方城县| 彰化县| 西林县| 孙吴县| 普宁市| 平度市| 长岛县| 张掖市| 梅河口市| 龙山县| 安塞县| 阳原县| 天台县| 湘潭县| 漳州市| 江阴市| 吉隆县| 小金县| 泌阳县| 稷山县| 麻城市| 清徐县| 犍为县| http://m.55506332.cn http://m.26580817.cn http://m.26597185.cn http://m.32383625.cn http://m.55296618.cn http://m.91051065.cn